翻訳と辞書
Words near each other
・ Deforestation in Malaysia
・ Deforestation in Myanmar
・ Deforestation in Nepal
・ Deforestation in New Zealand
・ Deforestation in Nigeria
・ Deforestation in Papua New Guinea
・ Deforestation in Sri Lanka
・ Deforestation in Thailand
・ Deforestation in the Democratic Republic of the Congo
・ Deforestation in the Philippines
・ Deforestation in the United States
・ Deforestation in Vietnam
・ Deforestation of the Amazon rainforest
・ Deformable mirror
・ Deformation
Deformation (engineering)
・ Deformation (mechanics)
・ Deformation (meteorology)
・ Deformation bands
・ Deformation mechanism
・ Deformation mechanism map
・ Deformation monitoring
・ Deformation retract
・ Deformation ring
・ Deformation theory
・ Deformed power
・ Deformed wing virus
・ Deformed workers' state
・ Deformer
・ Deformity


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Deformation (engineering) : ウィキペディア英語版
Deformation (engineering)

In materials science, deformation refers to any changes in the shape or size of an object due to-
* an applied force (the deformation energy in this case is transferred through work) or
* a change in temperature (the deformation energy in this case is transferred through heat).
The first case can be a result of tensile (pulling) forces, compressive (pushing) forces, shear, bending or torsion (twisting).
In the second case, the most significant factor, which is determined by the temperature, is the mobility of the structural defects such as grain boundaries, point vacancies, line and screw dislocations, stacking faults and twins in both crystalline and non-crystalline solids. The movement or displacement of such mobile defects is thermally activated, and thus limited by the rate of atomic diffusion. 〔Davidge, R.W., Mechanical Behavior of Ceramics, Cambridge Solid State Science Series, Eds. Clarke, D.R., et al. (1979)〕〔Zarzycki, J., Glasses and the Vitreous State, Cambridge Solid State Science Series, Eds. Clarke, D.R., et al.(1991)〕
Deformation is often described as strain.
As deformation occurs, internal inter-molecular forces arise that oppose the applied force. If the applied force is not too great these forces may be sufficient to completely resist the applied force and allow the object to assume a new equilibrium state and to return to its original state when the load is removed. A larger applied force may lead to a permanent deformation of the object or even to its structural failure.
In the figure it can be seen that the compressive loading (indicated by the arrow) has caused deformation in the cylinder so that the original shape (dashed lines) has changed (deformed) into one with bulging sides. The sides bulge because the material, although strong enough to not crack or otherwise fail, is not strong enough to support the load without change, thus the material is forced out laterally. Internal forces (in this case at right angles to the deformation) resist the applied load.
The concept of a rigid body can be applied if the deformation is negligible.
== Types of deformation ==

Depending on the type of material, size and geometry of the object, and the forces applied, various types of deformation may result. The image to the right shows the engineering stress vs. strain diagram for a typical ductile material such as steel. Different deformation modes may occur under different conditions, as can be depicted using a deformation mechanism map.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Deformation (engineering)」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.